EconPapers    
Economics at your fingertips  
 

On quadratic logistic regression models when predictor variables are subject to measurement error

Jakub Stoklosa, Yih-Huei Huang, Elise Furlan and Wen-Han Hwang

Computational Statistics & Data Analysis, 2016, vol. 95, issue C, 109-121

Abstract: Owing to its good properties and a simple model fitting procedure, logistic regression is one of the most commonly used methods applied to data consisting of binary outcomes and one or more predictor variables. However, if the predictor variables are measured with error and the functional relationship between the response and predictor variables is non-linear (e.g., quadratic) then consistent estimation of model parameters is more challenging to develop. To address the effects of measurement error in predictor variables when using quadratic logistic regression models, two novel approaches are developed: (1) an approximated refined regression calibration; and (2) a weighted corrected score method. Both proposed approaches offer several advantages over existing methods in that they are computationally efficient and are straightforward to implement. A simulation study was conducted to evaluate the estimators’ finite sample performance. The proposed methods are also applied on real data from a medical study and an ecological application.

Keywords: Functional measurement error; Quadratic logistic regression; Regression calibration; Weighted corrected score (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731500239X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:95:y:2016:i:c:p:109-121

DOI: 10.1016/j.csda.2015.09.012

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:95:y:2016:i:c:p:109-121