Bayesian analysis of two-piece location–scale models under reference priors with partial information
Shiyi Tu,
Min Wang and
Xiaoqian Sun
Computational Statistics & Data Analysis, 2016, vol. 96, issue C, 133-144
Abstract:
Bayesian estimators are developed and compared with the maximum likelihood estimators for the two-piece location–scale models, which contain several well-known distributions such as the asymmetric Laplace distribution, the two-piece normal distribution, and the two-piece Student-t distribution. For the validity of Bayesian analysis, it is essential to use priors that could lead to proper posterior distributions. Specifically, reference priors with partial information have been considered. A sufficient and necessary condition is established to guarantee the propriety of the posterior distribution under a general class of priors. The performance of the proposed approach is illustrated through extensive simulation studies and real data analysis.
Keywords: Two-piece location–scale models; Asymmetric Laplace distribution; Objective priors; Reference priors with partial information; Posterior distribution (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315002704
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:96:y:2016:i:c:p:133-144
DOI: 10.1016/j.csda.2015.11.002
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().