High dimensional classifiers in the imbalanced case
Britta Anker Bak and
Jens Ledet Jensen
Computational Statistics & Data Analysis, 2016, vol. 98, issue C, 46-59
Abstract:
A binary classification problem is imbalanced when the number of samples from the two groups differs. For the high dimensional case, where the number of variables is much larger than the number of samples, imbalance leads to a bias in the classification. The independence classifier is studied theoretically and based on the analysis two new classifiers are suggested that can handle any imbalance ratio. The analytical results are supplemented by a simulation study, where the suggested classifiers in some aspects outperform multiple undersampling. For correlated data the ROAD classifier is considered and a suggestion is given for how to modify the classifier to handle the bias from imbalanced group sizes.
Keywords: High dimension; Imbalance; Classification (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315003175
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:98:y:2016:i:c:p:46-59
DOI: 10.1016/j.csda.2015.12.009
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().