Using double-debiased machine learning to estimate the impact of Covid-19 vaccination on mortality and staff absences in elderly care homes
Sourafel Girma and
David Paton
European Economic Review, 2024, vol. 170, issue C
Abstract:
Machine learning approaches provide an alternative to traditional fixed effects estimators in causal inference. In particular, double-debiased machine learning (DDML) can control for confounders without making subjective judgements about appropriate functional forms. In this paper, we use DDML to examine the impact of differential Covid-19 vaccination rates on care home mortality and other outcomes. Our approach accommodates fixed effects to account for unobserved heterogeneity. In contrast to standard fixed effects estimates, the DDML results provide some evidence that higher vaccination take-up amongst residents, but not staff, reduced Covid mortality in elderly care homes. However, this effect was relatively small, is not robust to alternative measures of mortality and was restricted to the initial vaccination roll-out period.
Keywords: Machine learning; Vaccines; Care homes; Covid-19 (search for similar items in EconPapers)
JEL-codes: C1 I18 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0014292124002113
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eecrev:v:170:y:2024:i:c:s0014292124002113
DOI: 10.1016/j.euroecorev.2024.104882
Access Statistics for this article
European Economic Review is currently edited by T.S. Eicher, A. Imrohoroglu, E. Leeper, J. Oechssler and M. Pesendorfer
More articles in European Economic Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().