EconPapers    
Economics at your fingertips  
 

Popular matchings with weighted voters

Klaus Heeger and Ágnes Cseh

Games and Economic Behavior, 2024, vol. 144, issue C, 300-328

Abstract: We consider a natural generalization of the well-known Popular Matching problem where every vertex has a weight. We call a matching M more popular than matching M′ if the weight of vertices preferring M to M′ is larger than the weight of vertices preferring M′ to M. For this case, we show that it is NP-hard to find a popular matching. Our main result is a polynomial-time algorithm that delivers a popular matching or a proof for its non-existence in instances where all vertices on one side have weight c for some c>3 and all vertices on the other side have weight 1.

Keywords: Popular matching; Stable matching; Complexity; Algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0899825624000174
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:gamebe:v:144:y:2024:i:c:p:300-328

DOI: 10.1016/j.geb.2024.01.015

Access Statistics for this article

Games and Economic Behavior is currently edited by E. Kalai

More articles in Games and Economic Behavior from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:gamebe:v:144:y:2024:i:c:p:300-328