EconPapers    
Economics at your fingertips  
 

A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews

Stephanie Meek, Violetta Wilk and Claire Lambert

Journal of Business Research, 2021, vol. 125, issue C, 354-367

Abstract: With the proliferation of user generated online reviews, uncovering helpful restaurant reviews is increasingly challenging for potential consumers. Heuristics (such as “Likes”) not only facilitate this process but also enhance the social impact of a review on an Online Opinion Platform. Based on Dual Process Theory and Social Impact Theory, this study explores which contextual and descriptive attributes of restaurant reviews influence the reviewee to accept a review as helpful and thus, “Like” the review. Utilising both qualitative and quantitative methodologies, a big data sample of 58,468 restaurant reviews on Zomato were analysed. Results revealed the informational factor of positive recommendation framing and the normative factors of strong argument quality and moderate recommendation ratings, influence the generation of a reviewee “Like”. This study highlights the important filtering function a heuristic can offer prospective customers which can also result in greater social impact for the Online Opinion Platform.

Keywords: Online restaurant reviews; Social impact theory; Dual process theory; Helpfulness; Big data (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296320308328
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:125:y:2021:i:c:p:354-367

DOI: 10.1016/j.jbusres.2020.12.001

Access Statistics for this article

Journal of Business Research is currently edited by A. G. Woodside

More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jbrese:v:125:y:2021:i:c:p:354-367