EconPapers    
Economics at your fingertips  
 

A complex networks approach to pension funds

D’Arcangelis, Anna Maria, Susanna Levantesi and Giulia Rotundo

Journal of Business Research, 2021, vol. 129, issue C, 687-702

Abstract: In this paper, techniques proper to complex networks studies have been applied to analyze features of the investment styles and similarities in the Italian pension funds. The analysis has been developed through interdisciplinary approaches. First, we look at the node degree distributions; next, we consider the centrality measures, like betweenness and closeness. Results indicate that the network of funds is dense and assortative, with short path lengths. Moreover, through community detection algorithms, it is found that many funds show similar features. In particular, the network of benchmarks is far from being dense, is characterized by hubs, and is disassortative. Furthermore, the insertion of weights does not produce dramatic changes in the centrality measures, but it blurs the communities. Still, the k-core and the highest k-shell do properly evidence the most popular benchmarks. In conclusion, the network structure of the Italian pension funds, without taking into account information from weights, seems to contain already sufficient information for detecting similarities in investments styles.

Keywords: Pension funds; Benchmarks; Complex networks; Community detection (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296319306629
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:129:y:2021:i:c:p:687-702

DOI: 10.1016/j.jbusres.2019.10.071

Access Statistics for this article

Journal of Business Research is currently edited by A. G. Woodside

More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jbrese:v:129:y:2021:i:c:p:687-702