EconPapers    
Economics at your fingertips  
 

A time-space network flow approach to dynamic repositioning in bicycle sharing systems

Dong Zhang, Chuhang Yu, Jitamitra Desai, H.Y.K. Lau and Sandeep Srivathsan

Transportation Research Part B: Methodological, 2017, vol. 103, issue C, 188-207

Abstract: Faced with increasing population density, rising traffic congestion, and the resulting upsurge in carbon emissions, several urban metropolitan areas have instituted public bicycle sharing system as a viable alternative mode of transportation to complement existing long-distance bus- and metro- transit systems. A pressing issue that needs to be addressed in bike sharing systems is the accrued imbalance of bicycles between commuter demands and inventory levels at stations. To overcome this issue, a commonly employed strategy is to reposition bicycles during off-peak periods (typically at night) when no new user arrivals are expected. However, when such an imbalance occurs during day-time peak hours, such a passive strategy would result in lower resource utilization rates. To overcome this drawback, in this study, we propose a dynamic bicycle repositioning methodology that considers inventory level forecasting, user arrivals forecasting, bicycle repositioning, and vehicle routing in a unified manner. A multi-commodity time-space network flow model is presented, which results in an underlying complex nonlinear optimization problem. This problem is then reformulated into an equivalent mixed-integer problem using a model transformation approach and a novel heuristic algorithm is proposed to efficiently solve this model. Specifically, the first stage involves solving the linear relaxation of the MIP model, and a set covering problem is subsequently solved in the second stage to assign routes to the repositioning vehicles. The proposed methodology is evaluated using standard test-bed instances from the literature, and our numerical results reveal that the heuristic algorithm can achieve a significant reduction in rejected user requests when compared to existing methods, while yet expending only minimal computational effort.

Keywords: Bicycle sharing systems; Time-space network flow model; Dynamic repositioning; Demand forecasting; Convexification and linearization; Heuristic algorithm (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261516302697
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:103:y:2017:i:c:p:188-207

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2016.12.006

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:103:y:2017:i:c:p:188-207