A Markov decision process approach to vacant taxi routing with e-hailing
Xinlian Yu,
Song Gao,
Xianbiao Hu and
Hyoshin Park
Transportation Research Part B: Methodological, 2019, vol. 121, issue C, 114-134
Abstract:
The optimal routing of a vacant taxi is formulated as a Markov Decision Process (MDP) problem to account for long-term profit over the full working period. The state is defined by the node at which a vacant taxi is located, and action is the link to take out of the node. State transition probabilities depend on passenger matching probabilities and passenger destination probabilities. The probability that a vacant taxi is matched with a passenger during the traversal of a link is calculated based on temporal Poisson arrivals of passengers and spatial Poisson distributions of competing vacant taxis. Passenger destination probabilities are calculated directly using observed fractions of passengers going to destinations from a given origin. The MDP problem is solved by value iteration resulting in an optimal routing policy, and the computational efficiency is improved by utilizing parallelized matrix operations.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261518303837
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:121:y:2019:i:c:p:114-134
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2018.12.013
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().