Location of turning ratio and flow sensors for flow reconstruction in large traffic networks
Martin Rodriguez-Vega,
Carlos Canudas-de-Wit and
Hassen Fourati
Transportation Research Part B: Methodological, 2019, vol. 121, issue C, 21-40
Abstract:
In this work we examine the problem of minimizing the number of sensors needed to completely recover the vehicular flow in a steady state traffic network. We consider two possible sensor technologies: one that allows the measurement of turning ratios at a given intersection and the other that directly measures the flow in a road. We formulate an optimization problem that finds the optimal location of both types of sensors, such that a minimum number is required. To solve this problem, we propose a method that relies on the structure of the underlying graph, which has a quasi-linear computational complexity, resulting in less computing time when compared to other works in the literature. We evaluate our results using dynamical traffic simulations in synthetic networks.
Keywords: Sensor location; Flow estimation; Large traffic networks (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261518307306
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:121:y:2019:i:c:p:21-40
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2018.12.005
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().