Fundamental diagram estimation by using trajectories of probe vehicles
Toru Seo,
Yutaka Kawasaki,
Takahiko Kusakabe and
Yasuo Asakura
Transportation Research Part B: Methodological, 2019, vol. 122, issue C, 40-56
Abstract:
The fundamental diagram (FD), also known as the flow–density relation, is one of the most fundamental concepts in the traffic flow theory. Conventionally, FDs are estimated by using data collected by detectors. However, detectors’ installation sites are generally limited due to their high cost, making practical implementation of traffic flow theoretical works difficult. On the other hand, probe vehicles can collect spatially continuous data from wide-ranging area, and thus they can be useful sensors for large-scale traffic management. In this study, a novel framework of FD estimation by using probe vehicle data is developed. It determines FD parameters based on trajectories of randomly sampled vehicles and a given jam density that is easily inferred by other data sources. A computational algorithm for estimating a triangular FD based on actual, potentially noisy traffic data obtained by multiple probe vehicles is developed. The algorithm was empirically validated by using real-world probe vehicle data on a highway. The results suggest that the algorithm accurately and robustly estimates the FD parameters.
Keywords: Traffic flow theory; Fundamental diagram; Flow–density relation; Mobile sensing; Probe vehicle; Connected vehicle (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261518303527
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:122:y:2019:i:c:p:40-56
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2019.02.005
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().