High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks
Carolina Osorio
Transportation Research Part B: Methodological, 2019, vol. 124, issue C, 18-43
Abstract:
This paper considers high-dimensional offline calibration problems for large-scale simulation-based network models. We propose a metamodel simulation-based optimization (SO) approach. The proposed method is formulated and validated on a simple synthetic toy network. It is then applied to a high-dimensional case study of a large-scale Singapore network. Compared to two benchmark methods, a derivative-free pattern search method and the SPSA method, the proposed method improves the objective function estimates by two orders of magnitude. Moreover, this improvement is achieved after only 2 simulation runs. Hence, the proposed method is computationally efficient.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261517309694
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:124:y:2019:i:c:p:18-43
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2019.01.005
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().