EconPapers    
Economics at your fingertips  
 

Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks

Mark P.H. Raadsen and Michiel Bliemer

Transportation Research Part B: Methodological, 2019, vol. 126, issue C, 471-501

Abstract: In this paper a novel solution algorithm is proposed for solving general first order dynamic network loading (DNL) problems in general transport networks. This solution algorithm supports any smooth non-linear two regime concave fundamental diagram and adopts a simplified fanning scheme. It is termed eGLTM (event-based General Link Transmission Model) and is based on a continuous-time formulation of the kinematic wave model that adapts shockwave theory to simplify expansion fans. As the name suggests eGLTM is a generalisation of eLTM, which is a special case that solves the simplified first order model assuming a triangular fundamental diagram. We analyse the impact of modelling delay in the hypocritical branch of the fundamental diagram to assess the differences between the two models. In addition, we propose an additional stream of mixture events to propagate multi-commodity flow in event based macroscopic models, which makes both eLTM and eGLTM suitable for dynamic traffic assignment (DTA) applications. The proposed solution scheme can yield exact solutions as well as approximate solutions at a significantly lesser cost. The efficiency of the model is demonstrated in a number of case studies. Furthermore, different settings for our simplified fanning scheme are investigated as well as an extensive analysis on the effect of including route choice on the algorithms computational cost. Finally, a large scale case study is conducted to investigate the suitability of our newly proposed model in a practical context and assess its efficiency. In this study comparisons between eLTM and eGLTM are included to demonstrate the impact of aforementioned generalisation as well as the multi-commodity extension that is proposed.

Keywords: Continuous-time; Grid free; Event-based; Solution scheme; Link transmission model; Macroscopic traffic flow; Dynamic traffic assignment; Network loading; Simplified fanning (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261517301492
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:126:y:2019:i:c:p:471-501

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2018.01.003

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:126:y:2019:i:c:p:471-501