EconPapers    
Economics at your fingertips  
 

Machine learning-driven algorithms for the container relocation problem

Canrong Zhang, Hao Guan, Yifei Yuan, Weiwei Chen and Tao Wu

Transportation Research Part B: Methodological, 2020, vol. 139, issue C, 102-131

Abstract: The container relocation problem is one of important issues in seaport terminals which could bring a significant saving on the operating cost even with a slight improvement due to the huge number of containers processed across the world each year. Given a specific layout and container retrieval priorities, the container relocation problem aims to find the optimal movement sequence to minimize the total number of container relocation operations. In this paper, we propose novel machine learning-driven algorithms, which integrate optimization methods and machine learning techniques, to solve the problem. More specifically, we propose a new upper bound method called MLUB that incorporates branch pruners. These pruners are derived from some machine learning techniques through using the optimal solution values of many small-scale instances. The tightened upper bounds generated by MLUB are used subsequently both in the exact branch-and-bound algorithm called IB&B and the hybrid beam search heuristic called MLBS. Moreover, we also provide a tighter lower bound for the problem by additionally considering the interaction between consecutive target containers. Based on the benchmark data published recently in the literature, extensive experiments are conducted to test the performance of the proposed algorithms. The experimental results demonstrate that the proposed algorithms outperform the state-of-the-art algorithms reported in the literature, and some managerial insights regarding the load intensity of the bay and some algorithm parameters such as the look-ahead depth and the beam width are drawn from the results.

Keywords: Container relocation; branch-and-bound algorithm; beam search; machine learning-driven technique (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261520303325
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:139:y:2020:i:c:p:102-131

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2020.05.017

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:139:y:2020:i:c:p:102-131