An actor-critic deep reinforcement learning approach for metro train scheduling with rolling stock circulation under stochastic demand
Cheng-shuo Ying,
Andy H.F. Chow and
Kwai-Sang Chin
Transportation Research Part B: Methodological, 2020, vol. 140, issue C, 210-235
Abstract:
This paper presents a novel actor-critic deep reinforcement learning approach for metro train scheduling with circulation of limited rolling stock. The scheduling problem is modeled as a Markov decision process driven by stochastic passenger demand. As in most dynamic optimization problems, the complexity of the scheduling process grows exponentially with the amount of states, decisions, and uncertainties involved. This study aims to address this ‘curses of dimensionality’ issue by adopting an actor-critic deep reinforcement learning solution framework. The framework simplifies the evaluation and searching process for potential optimal solutions by parameterizing the original state and decision spaces with the use of artificial neural networks. A deep deterministic policy gradient algorithm is developed for training the artificial neural networks via simulated system transitions before the actor-critic agent can be applied for online schedule control. The proposed approach is tested with a real-world scenario configured with data collected from the Victoria Line of London Underground, UK. Experiment results illustrate the advantages of the proposed method over a range of established meta-heuristics in terms of computing time, system efficiency, and robustness under different stochastic environments. This study innovates urban transit operations with state-of-the-art computer science and dynamic optimization techniques.
Keywords: Metro train scheduling; Stochastic transit demand; Actor-critic architecture; Deep reinforcement learning; Multi-objective optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261520303829
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:140:y:2020:i:c:p:210-235
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2020.08.005
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().