EconPapers    
Economics at your fingertips  
 

Efficient evaluation of stochastic traffic flow models using Gaussian process approximation

Pieter Jacob Storm, Michel Mandjes and Bart van Arem

Transportation Research Part B: Methodological, 2022, vol. 164, issue C, 126-144

Abstract: This paper studies a Gaussian process approximation for a class of stochastic traffic flow models. It can be used to efficiently and accurately evaluate the joint (in the spatial and temporal sense) distribution of vehicle-density distributions in road traffic networks of arbitrary topology. The Gaussian approximation follows, via a scaling-limit argument, from a Markovian model that is consistent with discrete-space kinematic wave models. We describe in detail how this formal result can be converted into a computational procedure. The performance of our approach is demonstrated through a series of experiments that feature various realistic scenarios. Moreover, we discuss the computational complexity of our approach by assessing how computation times depend on the network size. We also argue that the (debatable) assumption that the vehicles’ headways are exponentially distributed does not negatively impact the accuracy of our approximation.

Keywords: Stochastic traffic flow models; Gaussian approximation; Efficient evaluation; Road traffic networks; Traffic flow theory (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261522001321
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:164:y:2022:i:c:p:126-144

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2022.08.003

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:164:y:2022:i:c:p:126-144