Statistical inference of travelers’ route choice preferences with system-level data
Pablo Guarda and
Sean Qian
Transportation Research Part B: Methodological, 2024, vol. 179, issue C
Abstract:
Traditional network models encapsulate travel behavior among all origin–destination pairs based on a simplified and generic travelers’ utility function. Typically, the utility function consists of travel time solely, and its coefficients are equated to estimates obtained from discrete choice models and stated preference data. While this modeling strategy is reasonable, the inherent sampling bias in individual-level experimental data may be further amplified over network flow aggregation, leading to inaccurate flow estimates. In addition, individual-level data must be collected from surveys or travel diaries, which may be labor-intensive, costly, and limited to a small time horizon. To address these limitations, this study extends classical bi-level formulations to estimate travelers’ utility functions with multiple attributes using system-level data. This data tends to be less subject to sampling bias than individual-level data, it is cheaper to collect and it has become increasingly diverse and available. To leverage system-level data, we formulate a methodology grounded on non-linear least squares to statistically infer travelers’ utility function in the network context using traffic counts, traffic speeds, the number of traffic incidents, and sociodemographic information obtained from the US Census, among other attributes. The analysis of the mathematical properties of the optimization problem and its pseudo-convexity motivates the use of normalized gradient descent, an algorithm developed in the machine learning community that is suitable for pseudo-convex programs. More importantly, we develop a hypothesis test framework to examine the statistical properties of coefficients attached to utility terms and to perform attribute selection. Experiments on synthetic data show that the travelers’ utility function coefficients can be consistently recovered and that hypothesis tests are reliable statistics to identify which attributes are determinants of travelers’ route choices. Besides, a series of Monte-Carlo experiments showed that statistical inference is robust to various levels of sensor coverage and to noises in the Origin-Destination matrix and the traffic count measurements. The methodology is also deployed at a large scale using real-world multi-source data in Fresno, CA, collected before and during the COVID-19 outbreak.
Keywords: Network models; Stochastic user equilibrium; Route choice models; Travel behavior; Utility function; Multinomial logit model; Hypothesis testing; Pseudo-convexity; Normalized gradient descent; Traffic count data (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261523001789
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:179:y:2024:i:c:s0191261523001789
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2023.102853
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().