EconPapers    
Economics at your fingertips  
 

Delay-throughput tradeoffs for signalized networks with finite queue capacity

Shaohua Cui, Yongjie Xue, Kun Gao, Kai Wang, Bin Yu and Xiaobo Qu

Transportation Research Part B: Methodological, 2024, vol. 180, issue C

Abstract: Network-level adaptive signal control is an effective way to reduce delay and increase network throughput. However, in the face of asymmetric exogenous demand, the increase of network performance via adaptive signal control alone is at the expense of service fairness (i.e., phase actuation fairness and network resource utilization fairness). In addition, for oversaturated networks, arbitrary adaptive signal control seems to have little effect on improving network performance. Therefore, under the assumption that the mean routing proportions/turn ratios of vehicles at intersections are fixed, this study investigates the problem of optimally allocating input rates to entry links and simultaneously finding a stabilizing signal control policy with phase fairness. We model the stochastic optimization problem of maximizing network throughput subject to network stability (i.e., all queue lengths have finite means) and average phase actuation constraints to bridge the gap between stochastic network stability control and convex optimization. Moreover, we further propose a micro-level joint admission and bounded signal control algorithm to achieve network stability and throughput optimization simultaneously. Joint control is implemented in a fully decomposed and distributed manner. For any arrival rate, joint control provably achieves network throughput within O(1/V) of optimality while trading off average delay with O(V), where V is an adjusted control parameter. Through a comparative simulation of a real network with 256 O-D pairs, the proposed joint control keeps network throughput at maximum, guarantees service fairness, and fully utilizes network capacity (i.e., increases network throughput by 17.54%).

Keywords: Lyapunov optimization; Distributed signal control; Admission control; Network stability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261523002011
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:180:y:2024:i:c:s0191261523002011

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2023.102876

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:180:y:2024:i:c:s0191261523002011