EconPapers    
Economics at your fingertips  
 

Providing real-time en-route suggestions to CAVs for congestion mitigation: A two-way deep reinforcement learning approach

Xiaoyu Ma and Xiaozheng He

Transportation Research Part B: Methodological, 2024, vol. 189, issue C

Abstract: This research investigates the effectiveness of information provision for congestion reduction in Connected Autonomous Vehicle (CAV) systems. The inherent advantages of CAVs, such as vehicle-to-everything communication, advanced vehicle autonomy, and reduced human involvement, make them conducive to achieving Correlated Equilibrium (CE). Leveraging these advantages, this research proposes a reinforcement learning framework involving CAVs and an information provider, where CAVs conduct real-time learning to minimize their individual travel time, while the information provider offers real-time route suggestions aiming to minimize the system’s total travel time. The en-route routing problem of the CAVs is formulated as a Markov game and the information provision problem is formulated as a single-agent Markov decision process. Then, this research develops a customized two-way deep reinforcement learning approach to solve the interrelated problems, accounting for their unique characteristics. Moreover, CE has been formulated within the proposed framework. Theoretical analysis rigorously proves the realization of CE and that the proposed framework can effectively mitigate congestion without compromising individual user optimality. Numerical results demonstrate the effectiveness of this approach. Our research contributes to the advancement of congestion reduction strategies in CAV systems with the mitigation of the conflict between system-level and individual-level goals using CE as a theoretical foundation. The results highlight the potential of information provision in fostering coordination and correlation among CAVs, thereby enhancing traffic efficiency and achieving system-level goals in smart transportation.

Keywords: Information provision; Correlated equilibrium; Reinforcement learning; Connected autonomous vehicles; Congestion mitigation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261524001383
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001383

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2024.103014

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001383