Comparing hundreds of machine learning and discrete choice models for travel demand modeling: An empirical benchmark
Shenhao Wang,
Baichuan Mo,
Yunhan Zheng,
Stephane Hess and
Jinhua Zhao
Transportation Research Part B: Methodological, 2024, vol. 190, issue C
Abstract:
Numerous studies have compared machine learning (ML) and discrete choice models (DCMs) in predicting travel demand. However, these studies often lack generalizability as they compare models deterministically without considering contextual variations. To address this limitation, our study develops an empirical benchmark by designing a tournament model to learn the intrinsic predictive values of ML and DCMs. This novel approach enables us to efficiently summarize a large number of experiments, quantify the randomness in model comparisons, and use formal statistical tests to differentiate between the model and contextual effects. This benchmark study compares two large-scale data sources: a database compiled from literature review summarizing 136 experiments from 35 studies, and our own experiment data, encompassing a total of 6970 experiments from 105 models and 12 model families, tested repeatedly on three datasets, sample sizes, and choice categories. This benchmark study yields two key findings. Firstly, many ML models, particularly the ensemble methods and deep learning, statistically outperform the DCM family and its individual variants (i.e., multinomial, nested, and mixed logit), thus corroborating with the previous research. However, this study also highlights the crucial role of the contextual factors (i.e., data sources, inputs and choice categories), which can explain models’ predictive performance more effectively than the differences in model types alone. Model performance varies significantly with data sources, improving with larger sample sizes and lower dimensional alternative sets. After controlling all the model and contextual factors, significant randomness still remains, implying inherent uncertainty in such model comparisons. Overall, we suggest that future researchers shift more focus from context-specific and deterministic model comparisons towards examining model transferability across contexts and characterizing the inherent uncertainty in ML, thus creating more robust and generalizable next-generation travel demand models.
Keywords: Machine learning; Choice modeling; Travel behavior; Prediction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261524001851
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:190:y:2024:i:c:s0191261524001851
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2024.103061
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().