Cellular automata microsimulation for modeling bi-directional pedestrian walkways
Victor J. Blue and
Jeffrey L. Adler
Transportation Research Part B: Methodological, 2001, vol. 35, issue 3, 293-312
Abstract:
Pedestrian flow is inherently complex, more so than vehicular flow, and development of microscopic models of pedestrian flow has been a daunting task for researchers. This paper presents the use of Cellular automata (CA) microsimulation for modeling bi-directional pedestrian walkways. It is shown that a small rule set is capable of effectively capturing the behaviors of pedestrians at the micro-level while attaining realistic macro-level activity. The model provides for simulating three modes of bi-directional pedestrian flow: (a) flows in directionally separated lanes, (b) interspersed flow, and (c) dynamic multi-lane (DML) flow. The emergent behavior that arises from the model, termed CA-Ped, is consistent with well-established fundamental properties.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (73)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191-2615(99)00052-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:35:y:2001:i:3:p:293-312
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().