A mixed spatially correlated logit model: formulation and application to residential choice modeling
Chandra R. Bhat and
Jessica Guo
Transportation Research Part B: Methodological, 2004, vol. 38, issue 2, 147-168
Abstract:
In recent years, there have been important developments in the simulation analysis of the mixed multinomial logit model as well as in the formulation of increasingly flexible closed-form models belonging to the generalized extreme value class. In this paper, we bring these developments together to propose a mixed spatially correlated logit (MSCL) model for location-related choices. The MSCL model represents a powerful approach to capture both random taste variations as well as spatial correlation in location choice analysis. The MSCL model is applied to an analysis of residential location choice using data drawn from the 1996 Dallas-Fort Worth household survey. The empirical results underscore the need to capture unobserved taste variations and spatial correlation, both for improved data fit and the realistic assessment of the effect of sociodemographic, transportation system, and land-use changes on residential location choice.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (95)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191-2615(03)00005-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:38:y:2004:i:2:p:147-168
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().