EconPapers    
Economics at your fingertips  
 

Daily activity pattern recognition by using support vector machines with multiple classes

Mahdieh Allahviranloo and Will Recker

Transportation Research Part B: Methodological, 2013, vol. 58, issue C, 16-43

Abstract: The focus of this paper is to learn the daily activity engagement patterns of travelers using Support Vector Machines (SVMs), a modeling approach that is widely used in Artificial intelligence and Machine Learning. It is postulated that an individual’s choice of activities depends not only on socio-demographic characteristics but also on previous activities of individual on the same day. In the paper, Markov Chain models are used to study the sequential choice of activities. The dependencies among activity type, activity sequence and socio-demographic data are captured by employing hidden Markov models. In order to learn model parameters, we use sequential multinomial logit models (MNL) and multiclass Support Vector Machines (K-SVM) with two different dependency structures. In the first dependency structure, it is assumed that type of activity at time ‘t’ depends on the last previous activity and socio-demographic data, whereas in the second structure we assume that activity selection at time ‘t’ depends on all of the individual’s previous activity types on the same day and socio-demographic characteristics. The models are applied to data drawn from a set of California households and a comparison of the accuracy of estimation of activity types and their sequence in the agenda, indicates the superiority of K-SVM models over MNL. Additionally, we show that accuracy in estimating activity patterns increases using different sets of explanatory variables or tuning parameters of the kernel function in K-SVM.

Keywords: Activity pattern recognition; Activity sequence; Support Vector Machines (SVMs); Hidden Markov Models (HMMs) (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261513001689
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:58:y:2013:i:c:p:16-43

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2013.09.008

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:58:y:2013:i:c:p:16-43