A new generalized heterogeneous data model (GHDM) to jointly model mixed types of dependent variables
Chandra R. Bhat
Transportation Research Part B: Methodological, 2015, vol. 79, issue C, 50-77
Abstract:
This paper formulates a generalized heterogeneous data model (GHDM) that jointly handles mixed types of dependent variables—including multiple nominal outcomes, multiple ordinal variables, and multiple count variables, as well as multiple continuous variables—by representing the covariance relationships among them through a reduced number of latent factors. Sufficiency conditions for identification of the GHDM parameters are presented. The maximum approximate composite marginal likelihood (MACML) method is proposed to estimate this jointly mixed model system. This estimation method provides computational time advantages since the dimensionality of integration in the likelihood function is independent of the number of latent factors. The study undertakes a simulation experiment within the virtual context of integrating residential location choice and travel behavior to evaluate the ability of the MACML approach to recover parameters. The simulation results show that the MACML approach effectively recovers underlying parameters, and also that ignoring the multi-dimensional nature of the relationship among mixed types of dependent variables can lead not only to inconsistent parameter estimation, but also have important implications for policy analysis.
Keywords: Latent factors; Big data analytics; High dimensional data; MACML estimation approach; Mixed dependent variables; Structural equations models (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261515001198
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:79:y:2015:i:c:p:50-77
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2015.05.017
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().