Understanding urban mobility patterns with a probabilistic tensor factorization framework
Lijun Sun and
Kay W. Axhausen
Transportation Research Part B: Methodological, 2016, vol. 91, issue C, 511-524
Abstract:
The rapid developments of ubiquitous mobile computing provide planners and researchers with new opportunities to understand and build smart cities by mining the massive spatial-temporal mobility data. However, given the increasing complexity and volume of the emerging mobility datasets, it also becomes challenging to build novel analytical framework that is capable of understanding the structural properties and critical features. In this paper, we introduce an analytical framework to deal with high-dimensional human mobility data. To this end, we formulate mobility data in a probabilistic setting and consider each record a multivariate observation sampled from an underlying distribution. In order to characterize this distribution, we use a multi-way probabilistic factorization model based on the concept of tensor decomposition and probabilistic latent semantic analysis (PLSA). The model provides us with a flexible approach to understand multi-way mobility involving higher-order interactions—which are difficult to characterize with conventional approaches—using simple latent structures. The model can be efficiently estimated using the expectation maximization (EM) algorithm. As a numerical example, this model is applied on a four-way dataset recording 14 million public transport journeys extracted from smart card transactions in Singapore. This framework can shed light on the modeling of urban structure by understanding mobility flows in both spatial and temporal dimensions.
Keywords: Human mobility; Urban computing; Smart card data; Tensor decomposition; Data-driven (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261516300261
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:91:y:2016:i:c:p:511-524
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2016.06.011
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().