EconPapers    
Economics at your fingertips  
 

An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations

Burak Boyacı, Konstantinos G. Zografos and Nikolas Geroliminis

Transportation Research Part B: Methodological, 2017, vol. 95, issue C, 214-237

Abstract: One-way electric vehicle carsharing systems are receiving increasing attention due to their mobility, environmental, and societal benefits. One of the major issues faced by the operators of these systems is the optimization of the relocation operations of personnel and vehicles. These relocation operations are essential in order to ensure that vehicles are available for use at the right place at the right time. Vehicle availability is a key indicator expressing the level of service offered to customers. However, the relocation operations, that ensure this availability, constitute a major cost component for the provision of these services. Therefore, clearly there is a trade-off between the cost of vehicle and personnel relocation and the level of service offered. In this paper we are developing, solving, and applying, in a real world context, an integrated multi-objective mixed integer linear programming (MMILP) optimization and discrete event simulation framework to optimize operational decisions for vehicle and personnel relocation in a carsharing system with reservations. We are using a clustering procedure to cope with the dimensionality of the operational problem without compromising on the quality of the obtained results. The optimization framework involves three mathematical models: (i) station clustering, (ii) operations optimization and (iii) personnel flow. The output of the optimization is used by the simulation in order to test the feasibility of the optimization outcome in terms of vehicle recharging requirements. The optimization model is solved iteratively considering the new constraints restricting the vehicles that require further charging to stay in the station until the results of the simulation are feasible in terms of electric vehicles’ battery charging levels. The application of the proposed framework using data from a real world system operating in Nice, France sheds light to trade-offs existing between the level of service offered, resource utilization, and certainty of fulfilling a trip reservation.

Keywords: One-way carsharing; Vehicle relocation optimization; Integer programming; Network flow (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261515301119
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:95:y:2017:i:c:p:214-237

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2016.10.007

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:95:y:2017:i:c:p:214-237