Enhancing model-based feedback perimeter control with data-driven online adaptive optimization
Anastasios Kouvelas,
Mohammadreza Saeedmanesh and
Nikolas Geroliminis
Transportation Research Part B: Methodological, 2017, vol. 96, issue C, 26-45
Abstract:
Most feedback perimeter control approaches that are based on the Macroscopic Fundamental Diagram (MFD) and are tested in detailed network structures restrict inflow from the external boundary of the network. Although such a measure is beneficial for the network performance, it creates virtual queues that do not interact with the rest of the traffic and assumes small unrestricted flow (i.e. almost zero disturbance). In reality, these queues can have a negative impact to traffic conditions upstream of the protected network that is not modelled. In this work an adaptive optimization scheme for perimeter control of heterogeneous transportation networks is developed and the aforementioned boundary control limitation is dropped. A nonlinear model is introduced that describes the evolution of the multi-region system over time, assuming the existence of well-defined MFDs. Multiple linear approximations of the model (for different set-points) are used for designing optimal multivariable integral feedback regulators. Since the resulting regulators are derived from approximations of the nonlinear dynamics, they are further enhanced in real-time with online learning/adaptive optimization, according to performance measurements. An iterative data-driven technique is integrated with the model-based design and its objective is to optimize the gain matrices and set-points of the multivariable perimeter controller based on real-time observations. The efficiency of the derived multi-boundary control scheme is tested in microsimulation for a large urban network with more than 1500 roads that is partitioned in multiple regions. The proposed control scheme is demonstrated to achieve a better distribution of congestion (by creating “artificial” inter-regional queues), thus preventing the network degradation and improving total delay and outflow.
Keywords: Real-time urban perimeter control; Macroscopic fundamental diagram; Linear feedback regulators; Online learning; Adaptive optimization; Adaptive fine-tuning (AFT) (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (40)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S019126151630710X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:96:y:2017:i:c:p:26-45
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2016.10.011
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().