Modelling Climate Change Impact on Irrigation Water Requirement and Yield of Winter Wheat ( Triticum aestivum L.), Barley ( Hordeum vulgare L.), and Fodder Maize ( Zea mays L.) in the Semi-Arid Qazvin Plateau, Iran
Behnam Mirgol,
Meisam Nazari and
Mohammad Eteghadipour
Additional contact information
Behnam Mirgol: Department of Water Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin 3414896818, Iran
Meisam Nazari: Department of Biogeochemistry of Agroecosystems, Faculty of Agricultural Sciences, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
Mohammad Eteghadipour: Department of Water and Soil, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran
Agriculture, 2020, vol. 10, issue 3, 1-14
Abstract:
It is very important to determine the irrigation water requirement (IR) of crops for optimal irrigation scheduling under the changing climate. This study aimed to investigate the impact of climate change on the future IR and yield of three strategic crops (winter wheat, barley, fodder maize) in the semi-arid Qazvin Plateau, Iran, for the periods 2016–2040, 2041–2065, and 2066–2090. The Canadian Earth System Model (CanESM2), applying IPCC scenarios rcp2.6, rcp4.5, and rcp8.5, was used to project the monthly maximum and minimum temperatures and monthly precipitation of the region. The results indicated that the maximum and minimum temperatures will increase by 1.7 °C and 1.2 °C, respectively, under scenario rcp8.5 in the period 2066–2090. The precipitation will decrease (1%–13%) under all scenarios in all months of the future periods, except in August, September, and October. The IR of winter wheat and barley will increase by 38%–79% under scenarios rcp2.6 and rcp8.5 in the future periods. The increase in the IR of fodder maize will be very slight (0.7%–4.1%). The yield of winter wheat and barley will decrease by ~50%–100% under scenarios rcp2.6 and rcp8.5 in the future periods. The reduction in the yield of maize will be ~4%. Serious attention has to be paid to the water resources management of the region. The use of drought-tolerant cultivars in the region can be a good strategy to deal with the predicted future climatic conditions.
Keywords: climate change; irrigation water requirement; precipitation; temperature; yield (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2077-0472/10/3/60/pdf (application/pdf)
https://www.mdpi.com/2077-0472/10/3/60/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:10:y:2020:i:3:p:60-:d:327637
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().