EconPapers    
Economics at your fingertips  
 

Innovative Models Built Based on Image Textures Using Traditional Machine Learning Algorithms for Distinguishing Different Varieties of Moroccan Date Palm Fruit ( Phoenix dactylifera L.)

Younés Noutfia () and Ewa Ropelewska ()
Additional contact information
Younés Noutfia: Agri Food and Quality Department, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco
Ewa Ropelewska: Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland

Agriculture, 2022, vol. 13, issue 1, 1-9

Abstract: The aim of this study was to develop the procedure for the varietal discrimination of date palm fruit using image analysis and traditional machine learning techniques. The fruit images of ‘Mejhoul’, ‘Boufeggous’, ‘Aziza’, ‘Assiane’, and ‘Bousthammi’ date varieties, converted to individual color channels, were processed to extract the texture parameters. After performing the attribute selection, the textures were used to build models intended for the discrimination of different varieties of date palm fruit using machine learning algorithms from Functions, Bayes, Lazy, Meta, and Trees groups. Models were developed for combining image textures selected from a set of all color channels and for sets of textures selected for individual color spaces and color channels. The models, including combined textures selected from all color channels, distinguished all five varieties with an average accuracy reaching 98%, and ‘Bousthammi’ and ‘Mejhoul’ were completely correctly discriminated for the SMO (Functions) and IBk (Lazy) machine learning algorithms. By reducing the number of varieties, the correctness of the date palm fruit classification increased. The models developed for the three most different date palm fruit varieties ‘Boufeggous’, ‘Bousthammi’, and ‘Mejhoul’ revealed an average discrimination accuracy of 100% for each algorithm used (SMO, Naive Bayes (Bayes), IBk, LogitBoost (Meta), and LMT (Trees)). In the case of individual color spaces and channels, the accuracies were lower, reaching 97.3% for color space RGB and SMO and LMT algorithms for all five varieties and 99.63% for Naive Bayes and IBk for the ‘Boufeggous’, ‘Bousthammi’, and ‘Mejhoul’ date palm fruits. The results can be used in practice to develop vision systems for sorting and distinguishing the varieties of date palm fruit to authenticate the variety of the fruit intended for further processing.

Keywords: date palm; fruit image processing; varietal discrimination; performance metrics (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/13/1/26/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/1/26/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2022:i:1:p:26-:d:1011241

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:26-:d:1011241