EconPapers    
Economics at your fingertips  
 

A New Approach for Agricultural Water Management Using Pillows Made from COVID-19 Waste Face Masks and Filled with a Hydrogel Polymer: Preliminary Studies

Haradhan Kolya and Chun-Won Kang ()
Additional contact information
Haradhan Kolya: Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 561-756, Republic of Korea
Chun-Won Kang: Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 561-756, Republic of Korea

Agriculture, 2023, vol. 13, issue 1, 1-12

Abstract: Face masks have become an essential commodity during the COVID-19 pandemic, and their use rises daily. Excessive face mask use will likely continue to combat the virus and bacterial impacts in the long term. Afterward, used face masks are hazardous to the environment since most are made of nonbiodegradable porous polymeric fibrous materials. Thus, finding new ways to recycle waste face masks is urgently needed. Similarly, managing agricultural water for irrigation is a crucial challenge in saving water. This study demonstrates an approach for recycling face masks as bag- or small-sized pillows filled with superabsorbent polymers (SAPs) for the slow release of water near plant roots. Previous studies have reported that SAPs or hydrogel could boost soil’s water retention capacity, mixed with hydrogel/SAP. However, mixing SAPs into soil is improper because biodegradation generates low toxic organic molecules and contaminates soil and surface water. The objective of this research was to develop a face mask reuse approach, reduce irrigation water using polymers, and reduce toxic contamination in the soil. Here, swollen SAPs were taken inside the pillow and buried near plants, and the growth of the plants was studied. The moisture of the inner soil was constant for a long time, boosting plant growth. Afterward, the face mask pillows could be removed from the soil and maintained for further use. This new approach could be helpful in pot farming. This approach could contribute to the circular economy and the development of environmental sustainability.

Keywords: irrigation; COVID-19 waste; hydrogel/SAP; agricultural applications; face mask (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/13/1/152/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/1/152/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:1:p:152-:d:1027875

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:13:y:2023:i:1:p:152-:d:1027875