SOLARIA-SensOr-driven resiLient and adaptive monitoRIng of farm Animals
Suresh Neethirajan ()
Additional contact information
Suresh Neethirajan: Farmworx Research Institute, Van der Waals straat, 6706 JS Wageningen, The Netherlands
Agriculture, 2023, vol. 13, issue 2, 1-19
Abstract:
Sensor-enabled big data and artificial intelligence platforms have the potential to address global socio-economic trends related to the livestock production sector through advances in the digitization of precision livestock farming. The increased interest in animal welfare, the likely reduction in the number of animals in relation to population growth in the coming decade and the growing demand for animal proteins pose an acute challenge to prioritizing animal welfare on the one hand, while maximizing the efficiency of production systems on the other. Current digital approaches do not meet these challenges due to a lack of efficient and lack of real-time non-invasive precision measurement technologies that can detect and monitor animal diseases and identify resilience in animals. In this opinion review paper, I offer a critical view of the potential of wearable sensor technologies as a unique and necessary contribution to the global market for farm animal health monitoring. To stimulate the sustainable, digital and resilient recovery of the agricultural and livestock industrial sector, there is an urgent need for testing and developing new ideas and products such as wearable sensors. By validating and demonstrating a fully functional wearable sensor prototype within an operational environment on the livestock farm that includes a miniaturized animal-borne biosensor and an artificial intelligence (AI)-based data acquisition and processing platform, the current needs, which have not yet been met, can be fulfilled. The expected quantifiable results from wearable biosensors will demonstrate that the digitization technology can perform acceptably within the performance parameters specified by the agricultural sector and under operational conditions, to measurably improve livestock productivity and health. The successful implementation of the digital wearable sensor networks would provide actionable real-time information on animal health status and can be deployed directly on the livestock farm, which will strengthen the green and digital recovery of the economy due to its significant and innovative potential.
Keywords: digital agriculture; precision livestock farming; smart farming; artificial intelligence; sensors; big data; animal resilience; animal welfare; precision food production systems (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/2077-0472/13/2/436/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/2/436/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:2:p:436-:d:1066790
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().