EconPapers    
Economics at your fingertips  
 

Effect of Soil Agricultural Use on Particle-Size Distribution in Young Glacial Landscape Slopes

Paweł Sowiński (), Sławomir Smólczyński, Mirosław Orzechowski, Barbara Kalisz and Arkadiusz Bieniek
Additional contact information
Paweł Sowiński: Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
Sławomir Smólczyński: Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
Mirosław Orzechowski: Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
Barbara Kalisz: Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
Arkadiusz Bieniek: Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland

Agriculture, 2023, vol. 13, issue 3, 1-14

Abstract: In the literature, mainly particle-size distribution (PSD) analyses in the soil catenas, of e.g., moraine and riverine landscapes were discussed. Analysis and comparison of PSD in moraine (ML) and ice-dammed lakes (ID-LL) landscapes were not studied. Since the landscape of ice-dammed lakes origin has diversified relief and is under intensive agricultural use, the aspects of erosion are of great importance. The changes in PSD were studied in 14 soil catenas (toposequences) of eroding soils at the upper slope (US) as well as colluvial soils at the middle (MS) and lower (LS) slopes and in the depressions (D). The PSD of the fine fractions (<2 mm) was analysed according to the hydrometer method. In order to describe the effect of agricultural use on the variability of PSD in soil surface horizons, sedimentological and granulometric indices were calculated. In the studied moraine landscape, the content of coarse silt fraction was increasing in the catenal sequence from 9.7% in the US to 17.7% in the D. Similar relationships were revealed for the fine silt content. Significant differences were found between the average contents of coarse and fine silt fractions at the US as well as the LS and the D. However, such a relation was not found in the soil catena in the ice-dammed lake landscape. Eroded and colluvial soil materials were very poorly sorted with a standard deviation index of 2.65–3.69. Humus horizons of analysed soils had very fine, fine skewed PSD, mesokurtic and platykurtic distribution (ML), symmetrical, fine skewed and platykurtic distribution (I-DLL). The cluster analysis enabled the separation of two groups of soils: one group in the moraine landscape and the other in the ice-dammed lakes landscape. The PSD in studied soils was similar only among the soils within one type of landscape.

Keywords: particle-size distribution; agricultural use; slope; young glacial landscape (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2077-0472/13/3/584/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/3/584/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:3:p:584-:d:1082676

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:584-:d:1082676