EconPapers    
Economics at your fingertips  
 

Agricultural Machinery Adequacy for Handling the Mombaça Grass Biomass in Agroforestry Systems

Gelton Fernando de Morais (), Jenyffer da Silva Gomes Santos, Daniela Han, Luiz Octávio Ramos Filho, Marcelo Gomes Barroca Xavier, Leonardo Schimidt, Hugo Thiago de Souza, Fernanda Ticianelli de Castro, Vanilde Ferreira de Souza-Esquerdo and Daniel Albiero
Additional contact information
Gelton Fernando de Morais: Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
Jenyffer da Silva Gomes Santos: Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
Daniela Han: Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu 18610-034, Brazil
Luiz Octávio Ramos Filho: Empresa Brasileira de Pesquisa Agropecuária, Jaguariúna 13918-110, Brazil
Marcelo Gomes Barroca Xavier: Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras 13600-970, Brazil
Leonardo Schimidt: Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
Hugo Thiago de Souza: Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu 18610-034, Brazil
Fernanda Ticianelli de Castro: Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras 13600-970, Brazil
Vanilde Ferreira de Souza-Esquerdo: Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
Daniel Albiero: Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, Campinas 13083-875, Brazil

Agriculture, 2023, vol. 13, issue 7, 1-28

Abstract: The current scenario of Agroforestry Systems (AFS) worldwide lacks specific machinery, resulting in practically all operations being carried out manually. This leads to a significant physical effort for small-scale farmers and limits the implementation of AFS to small areas. The objective of the study was to evaluate the suitability of existing machines for performing agroforestry tasks. This research utilizes Descriptive Statistics and Exponentially Weighted Moving Average methods to evaluate the data and compare the treatments, where different machines are used to cut Mombaça grass ( Megathyrsus maximus Jacq): (i) costal brushcutter (CBC); (ii) tractor-mounted rotary brushcutter (RBC); and (iii) mini grain reaper machine (GRM). The experiments were conducted in Jaguariúna, São Paulo, Brazil. GRM is recommended for achieving greater biomass production, reducing raking time, and minimizing operational costs. CBC is suitable for smaller areas due to its affordability and slow operation, which requires significant physical effort. RBC is recommended for reducing working time, physical effort, and personnel costs, making it suitable for larger-scale contexts.

Keywords: agroforestry mechanization; agroforestry mechanization; Megathyrsus maximus Jacq; agri-machines; forest farming; interrow production; machine suitability (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/13/7/1416/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/7/1416/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:7:p:1416-:d:1195823

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:13:y:2023:i:7:p:1416-:d:1195823