EconPapers    
Economics at your fingertips  
 

Fungicidal Protection as Part of the Integrated Cultivation of Sugar Beet: An Assessment of the Influence on Root Yield in a Long-Term Study

Iwona Jaskulska, Jarosław Kamieniarz, Dariusz Jaskulski (), Maja Radziemska and Martin Brtnický
Additional contact information
Iwona Jaskulska: Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. S. Kaliskiego St., 85-796 Bydgoszcz, Poland
Jarosław Kamieniarz: Skalista 16, 62-080 Sierosław, Poland
Dariusz Jaskulski: Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. S. Kaliskiego St., 85-796 Bydgoszcz, Poland
Maja Radziemska: Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
Martin Brtnický: Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic

Agriculture, 2023, vol. 13, issue 7, 1-10

Abstract: Despite the major role of non-chemical treatments in integrated plant protection, fungicides often need to be applied as a crop protection treatment in sugar beet farming. They should be used based on a good understanding of the requirements and effectiveness of the active ingredients. In 11-year field experiments, the effect that one and three foliar applications of fungicides containing various active ingredients (triazoles, benzimidazoles, strobilurines) had on sugar beet root yields was assessed, depending on various thermal and rainfall conditions. It was found that in eight of the 11 years, foliar application of fungicides increased yields compared to unprotected plants, and three foliar treatments during the growing season were more effective than a single application. The negative correlation of the root yield of fungicidally protected plants with total June rainfall was weaker than the same relationship for unprotected plants. At the same time, the positive correlation between the yield of fungicidally protected sugar beets and average June air temperature was stronger than the same relationship for unprotected plants. The research results indicate the need to conduct long-term field experiments and to continuously improve integrated production principles for sugar beet, especially regarding the rational use of pesticides.

Keywords: Beta vulgaris L.; fungicides; plant protection; precipitation conditions; thermal conditions; multi-year experiment (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/13/7/1449/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/7/1449/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:7:p:1449-:d:1200205

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:13:y:2023:i:7:p:1449-:d:1200205