YOLO-IAPs: A Rapid Detection Method for Invasive Alien Plants in the Wild Based on Improved YOLOv9
Yiqi Huang,
Hongtao Huang,
Feng Qin,
Ying Chen,
Jianghua Zou,
Bo Liu,
Zaiyuan Li,
Conghui Liu,
Fanghao Wan,
Wanqiang Qian and
Xi Qiao ()
Additional contact information
Yiqi Huang: College of Mechanical Engineering, Guangxi University, Nanning 530004, China
Hongtao Huang: College of Mechanical Engineering, Guangxi University, Nanning 530004, China
Feng Qin: College of Mechanical Engineering, Guangxi University, Nanning 530004, China
Ying Chen: College of Mechanical Engineering, Guangxi University, Nanning 530004, China
Jianghua Zou: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
Bo Liu: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
Zaiyuan Li: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
Conghui Liu: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
Fanghao Wan: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
Wanqiang Qian: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
Xi Qiao: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
Agriculture, 2024, vol. 14, issue 12, 1-19
Abstract:
Invasive alien plants (IAPs) present a significant threat to ecosystems and agricultural production, necessitating rigorous monitoring and detection for effective management and control. To realize accurate and rapid detection of invasive alien plants in the wild, we proposed a rapid detection approach grounded in an advanced YOLOv9, referred to as YOLO-IAPs, which incorporated several key enhancements to YOLOv9, including replacing the down-sampling layers in the model’s backbone with a DynamicConv module, integrating a Triplet Attention mechanism into the model, and replacing the original CIoU with the MPDloU. These targeted enhancements collectively resulted in a substantial improvement in the model’s accuracy and robustness. Extensive training and testing on a self-constructed dataset demonstrated that the proposed model achieved an accuracy of 90.7%, with the corresponding recall, mAP50, and mAP50:95 measured at 84.3%, 91.2%, and 65.1%, and a detection speed of 72 FPS. Compared to the baseline, the proposed model showed increases of 0.2% in precision, 3.5% in recall, and 1.0% in mAP50. Additionally, YOLO-IAPs outperformed other state-of-the-art object detection models, including YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv10 series, Faster R-CNN, SSD, CenterNet, and RetinaNet, demonstrating superior detection capabilities. Ablation studies further confirmed that the proposed model was effective, contributing to the overall improvement in performance, which underscored its pre-eminence in the domain of invasive alien plant detection and offered a marked improvement in detection accuracy over traditional methodologies. The findings suggest that the proposed approach has the potential to advance the technological landscape of invasive plant monitoring.
Keywords: invasive alien plants; deep learning; plant identification; YOLO model (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/14/12/2201/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/12/2201/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:12:p:2201-:d:1535096
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().