The IAB-INCHER project of earned doctorates (IIPED): A supervised machine learning approach to identify doctorate recipients in the German integrated employment biography data
Dominik Heinisch,
Johannes König and
Anne Otto
Additional contact information
Dominik Heinisch: University of Kassel and INCHER-Kassel (Germany)
Johannes König: University of Kassel and INCHER-Kassel (Germany)
Anne Otto: Institute for Employment Research (IAB), Nuremberg, Germany
No 201913, IAB-Discussion Paper from Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany]
Abstract:
"Only scarce information is available on doctorate recipients' career outcomes in Germany (BuWiN 2013). With the current information base, graduate students cannot make an informed decision whether to start a doctorate (Benderly 2018, Blank 2017). Administrative labour market data could provide the necessary information, is however incomplete in this respect. In this paper, we describe the record linkage of two datasets to close this information gap: data on doctorate recipients collected in the catalogue of the German National Library (DNB), and the German labour market biographies (IEB) from the German Institute of Employment Research. We use a machine learning based methodology, which 1) improves the record linkage of datasets without unique identifiers, and 2) evaluates the quality of the record linkage. The machine learning algorithms are trained on a synthetic training and evaluation dataset. In an exemplary analysis we compare the employment status of female and male doctorate recipients in Germany." (Author's abstract, IAB-Doku) ((en))
Keywords: Bundesrepublik Deutschland; beruflicher Verbleib; Berufserfolg; Berufsverlauf; Bibliothek; Datengewinnung; Dissertation; Frauen; Hochschulabsolventen; Datenfusion; Integrierte Erwerbsbiografien; künstliche Intelligenz; Lernen; Männer; Promotion; 1975-2015 (search for similar items in EconPapers)
JEL-codes: C81 E24 I20 (search for similar items in EconPapers)
Pages: 30 pages
Date: 2019-05-23
New Economics Papers: this item is included in nep-big, nep-cmp, nep-lab, nep-mac and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doku.iab.de/discussionpapers/2019/dp1319.pdf
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:iab:iabdpa:201913
Access Statistics for this paper
More papers in IAB-Discussion Paper from Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany] Contact information at EDIRC.
Bibliographic data for series maintained by IAB, Geschäftsbereich Wissenschaftliche Fachinformation und Bibliothek ().