Understanding and Predicting Systemic Corporate Distress: A Machine-Learning Approach
Burcu Hacibedel and
Ritong Qu
No 2022/153, IMF Working Papers from International Monetary Fund
Abstract:
In this paper, we study systemic non-financial corporate sector distress using firm-level probabilities of default (PD), covering 55 economies, and spanning the last three decades. Systemic corporate distress is identified by elevated PDs across a large portion of the firms in an economy. A machine-learning based early warning system is constructed to predict the onset of distress in one year’s time. Our results show that credit expansion, monetary policy tightening, overvalued stock prices, and debt-linked balance-sheet weaknesses predict corporate distress. We also find that systemic corporate distress events are associated with contractions in GDP and credit growth in advanced and emerging markets at different degrees and milder than financial crises.
Keywords: Nonfinancial sector; Probability of default; Early warning systems; Macroprudential policy; balance-sheet weakness; appendix B constructing predictor; distress events; appendix C machine learning model; PD indices; Corporate sector; Banking crises; Credit; Financial statements; Global (search for similar items in EconPapers)
Pages: 48
Date: 2022-07-29
New Economics Papers: this item is included in nep-big, nep-cmp, nep-fdg and nep-rmg
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.imf.org/external/pubs/cat/longres.aspx?sk=521462 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:imf:imfwpa:2022/153
Ordering information: This working paper can be ordered from
http://www.imf.org/external/pubs/pubs/ord_info.htm
Access Statistics for this paper
More papers in IMF Working Papers from International Monetary Fund International Monetary Fund, Washington, DC USA. Contact information at EDIRC.
Bibliographic data for series maintained by Akshay Modi ().