EconPapers    
Economics at your fingertips  
 

The Technological Elements of Artificial Intelligence

Matt Taddy

No 24301, NBER Working Papers from National Bureau of Economic Research, Inc

Abstract: We have seen in the past decade a sharp increase in the extent that companies use data to optimize their businesses. Variously called the `Big Data' or `Data Science' revolution, this has been characterized by massive amounts of data, including unstructured and nontraditional data like text and images, and the use of fast and flexible Machine Learning (ML) algorithms in analysis. With recent improvements in Deep Neural Networks (DNNs) and related methods, application of high-performance ML algorithms has become more automatic and robust to different data scenarios. That has led to the rapid rise of an Artificial Intelligence (AI) that works by combining many ML algorithms together – each targeting a straightforward prediction task – to solve complex problems. We will define a framework for thinking about the ingredients of this new ML-driven AI. Having an understanding of the pieces that make up these systems and how they fit together is important for those who will be building businesses around this technology. Those studying the economics of AI can use these definitions to remove ambiguity from the conversation on AI's projected productivity impacts and data requirements. Finally, this framework should help clarify the role for AI in the practice of modern business analytics and economic measurement.

JEL-codes: C01 C1 O33 (search for similar items in EconPapers)
Date: 2018-02
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ict, nep-pay and nep-tid
Note: PR
References: Add references at CitEc
Citations: View citations in EconPapers (29)

Published as The Technological Elements of Artificial Intelligence , Matt Taddy. in The Economics of Artificial Intelligence: An Agenda , Agrawal, Gans, and Goldfarb. 2019

Downloads: (external link)
http://www.nber.org/papers/w24301.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nbr:nberwo:24301

Ordering information: This working paper can be ordered from
http://www.nber.org/papers/w24301

Access Statistics for this paper

More papers in NBER Working Papers from National Bureau of Economic Research, Inc National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.. Contact information at EDIRC.
Bibliographic data for series maintained by ().

 
Page updated 2025-03-19
Handle: RePEc:nbr:nberwo:24301