Algorithmic Recommendations and Human Discretion
Victoria Angelova,
Will S. Dobbie and
Crystal Yang
No 31747, NBER Working Papers from National Bureau of Economic Research, Inc
Abstract:
Human decision-makers frequently override the recommendations generated by predictive algorithms, but it is unclear whether these discretionary overrides add valuable private information or reintroduce human biases and mistakes. We develop new quasi-experimental tools to measure the impact of human discretion over an algorithm on the accuracy of decisions, even when the outcome of interest is only selectively observed, in the context of bail decisions. We find that 90% of the judges in our setting underperform the algorithm when they make a discretionary override, with most making override decisions that are no better than random. Yet the remaining 10% of judges outperform the algorithm in terms of both accuracy and fairness when they make a discretionary override. We provide suggestive evidence on the behavior underlying these differences in judge performance, showing that the high-performing judges are more likely to use relevant private information and are less likely to overreact to highly salient events compared to the low-performing judges.
JEL-codes: C01 D8 K40 (search for similar items in EconPapers)
Date: 2023-09
New Economics Papers: this item is included in nep-ain and nep-cmp
Note: LE LS
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.nber.org/papers/w31747.pdf (application/pdf)
Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nbr:nberwo:31747
Ordering information: This working paper can be ordered from
http://www.nber.org/papers/w31747
The price is Paper copy available by mail.
Access Statistics for this paper
More papers in NBER Working Papers from National Bureau of Economic Research, Inc National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.. Contact information at EDIRC.
Bibliographic data for series maintained by ().