EconPapers    
Economics at your fingertips  
 

Wind turbine planetary gearbox feature extraction and fault diagnosis using a deep-learning-based approach

Miao He, David He, Jae Yoon, Thomas J Nostrand, Junda Zhu and Eric Bechhoefer

Journal of Risk and Reliability, 2019, vol. 233, issue 3, 303-316

Abstract: Planetary gearboxes are widely used in the drivetrain of wind turbines. Planetary gearbox fault diagnosis is very important for reducing the downtime and maintenance cost and improving the safety, reliability, and life span of the wind turbines. The wind energy industry is currently using condition monitoring systems to collect massive real-time data and conventional vibratory analysis as a standard method for planetary gearbox condition monitoring. As an attractive option to process big data for fault diagnosis, deep learning can automatically learn features that otherwise require much skill, time, and experience. This article presents a new deep-learning-based method for wind turbine planetary gearbox fault diagnosis developed by a large memory storage and retrieval neural network with dictionary learning. The developed approach can automatically extract self-learned fault features from raw vibration monitoring data and perform planetary gearbox fault diagnosis without supervised fine-tuning process. From the raw vibration monitoring data, a dictionary is first learned by a large memory storage and retrieval with dictionary learning network. Based on the learned dictionary, a sparse representation of the raw vibration signals is generated by shift-invariant sparse coding and input to a large memory storage and retrieval network classifier to obtain fault diagnosis results. The structure of the large memory storage and retrieval with dictionary learning is determined by optimal selection of the sliding box size to generate sub-patterns from the vibration data. The effectiveness of the presented method is tested and validated with a set of seeded fault vibration data collected at a planetary gearbox test rig in laboratory. The validation results have shown a promising planetary gearbox fault diagnosis performance with the presented method.

Keywords: Fault diagnostics; planetary gearbox; feature extraction; large memory storage and retrieval networks; deep learning; wind turbine (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X18768701 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:233:y:2019:i:3:p:303-316

DOI: 10.1177/1748006X18768701

Access Statistics for this article

More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:risrel:v:233:y:2019:i:3:p:303-316