A novel parameter estimation method for the Weibull distribution on heavily censored data
Renyan Jiang
Journal of Risk and Reliability, 2022, vol. 236, issue 2, 307-316
Abstract:
It is desired to build the life distribution models of critical components (which are assumed to be non-repairable) of a repairable system as early as possible based on field failure data in order to optimize the operation and maintenance decisions of the components. When the number of the systems under observation is large and the observation duration is relatively short, the samples obtained for modeling are large and heavily censored. For such samples, the classical parameter estimation methods (e.g. maximum likelihood method and least square method) do not provide robust estimates. To address this issue, this article develops a hybrid censoring index to quantitatively describe censoring characteristics of a data set, proposes a novel parameter estimation method based on information extracted from censored observations, and evaluates the accuracy and robustness of the proposed method through a numerical experiment. Its applicable range in terms of the hybrid censoring index is determined through an accuracy analysis. The experiment results show that the proposed approach provides much accurate estimates than the classical methods for heavily censored data. A real-world example is also included.
Keywords: Parameter estimation method; field data; large sample; heavily censored data; hybrid censoring index (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X19887648 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:236:y:2022:i:2:p:307-316
DOI: 10.1177/1748006X19887648
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().