Studying crime trends in the USA over the years 2000–2012
Volodymyr Melnykov and
Xuwen Zhu ()
Additional contact information
Volodymyr Melnykov: University of Alabama
Xuwen Zhu: University of Louisville
Advances in Data Analysis and Classification, 2019, vol. 13, issue 1, No 14, 325-341
Abstract:
Abstract Studying crime trends and tendencies is an important problem that helps to identify socioeconomic patterns and relationships of crucial significance. Finite mixture models are famous for their flexibility in modeling heterogeneity in data. A novel approach designed for accounting for skewness in the distributions of matrix observations is proposed and applied to the United States crime data collected between 2000 and 2012 years. Then, the model is further extended by incorporating explanatory variables. A step-by-step model development demonstrates differences and improvements associated with every stage of the process. Results obtained by the final model are illustrated and thoroughly discussed. Multiple interesting conclusions have been drawn based on the developed model and obtained model-based clustering partition.
Keywords: Crime data; Finite mixture model; Matrix normal distribution; Manly transformation; EM algorithm; 62P25 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11634-018-0326-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:13:y:2019:i:1:d:10.1007_s11634-018-0326-1
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-018-0326-1
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().