EconPapers    
Economics at your fingertips  
 

Directional co-clustering

Aghiles Salah () and Mohamed Nadif ()
Additional contact information
Aghiles Salah: SIS, Singapore Management University
Mohamed Nadif: LIPADE, Paris Descartes University

Advances in Data Analysis and Classification, 2019, vol. 13, issue 3, No 2, 620 pages

Abstract: Abstract Co-clustering addresses the problem of simultaneous clustering of both dimensions of a data matrix. When dealing with high dimensional sparse data, co-clustering turns out to be more beneficial than one-sided clustering even if one is interested in clustering along one dimension only. Aside from being high dimensional and sparse, some datasets, such as document-term matrices, exhibit directional characteristics, and the $$L_2$$ L 2 normalization of such data, so that it lies on the surface of a unit hypersphere, is useful. Popular co-clustering assumptions such as Gaussian or Multinomial are inadequate for this type of data. In this paper, we extend the scope of co-clustering to directional data. We present Diagonal Block Mixture of Von Mises–Fisher distributions (dbmovMFs), a co-clustering model which is well suited for directional data lying on a unit hypersphere. By setting the estimate of the model parameters under the maximum likelihood (ML) and classification ML approaches, we develop a class of EM algorithms for estimating dbmovMFs from data. Extensive experiments, on several real-world datasets, confirm the advantage of our approach and demonstrate the effectiveness of our algorithms.

Keywords: Co-clustering; Directional data; von Mises-Fisher distribution; EM algorithm; Document clustering; Main 62H30; Secondary 62H11 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s11634-018-0323-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:13:y:2019:i:3:d:10.1007_s11634-018-0323-4

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-018-0323-4

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:13:y:2019:i:3:d:10.1007_s11634-018-0323-4