Seemingly unrelated clusterwise linear regression
Giuliano Galimberti and
Gabriele Soffritti ()
Additional contact information
Giuliano Galimberti: University of Bologna
Gabriele Soffritti: University of Bologna
Advances in Data Analysis and Classification, 2020, vol. 14, issue 2, No 2, 235-260
Abstract:
Abstract Linear regression models based on finite Gaussian mixtures represent a flexible tool for the analysis of linear dependencies in multivariate data. They are suitable for dealing with correlated response variables when data come from a heterogeneous population composed of two or more sub-populations, each of which is characterised by a different linear regression model. Several types of finite mixtures of linear regression models have been specified by changing the assumptions on the parameters that differentiate the sub-populations and/or the vectors of regressors that affect the response variables. They are made more flexible in the class of models defined by mixtures of seemingly unrelated Gaussian linear regressions illustrated in this paper. With these models, the researcher is enabled to use a different vector of regressors for each dependent variable. The proposed class includes parsimonious models obtained by imposing suitable constraints on the variances and covariances of the response variables in the sub-populations. Details about the model identification and maximum likelihood estimation are given. The usefulness of these models is shown through the analysis of a real dataset. Regularity conditions for the model class are illustrated and a proof is provided that, when these conditions are met, the consistency of the maximum likelihood estimator under the examined models is ensured. In addition, the behaviour of this estimator in the presence of finite samples is numerically evaluated through the analysis of simulated datasets.
Keywords: EM algorithm; Envelope function; Identifiability; Linear model; Regularity conditions; 62J05; 62H12; 62F12 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11634-019-00369-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:14:y:2020:i:2:d:10.1007_s11634-019-00369-4
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-019-00369-4
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().