EconPapers    
Economics at your fingertips  
 

A stochastic block model for interaction lengths

Riccardo Rastelli () and Michael Fop
Additional contact information
Riccardo Rastelli: University College Dublin
Michael Fop: University College Dublin

Advances in Data Analysis and Classification, 2020, vol. 14, issue 2, No 11, 485-512

Abstract: Abstract We propose a new stochastic block model that focuses on the analysis of interaction lengths in dynamic networks. The model does not rely on a discretization of the time dimension and may be used to analyze networks that evolve continuously over time. The framework relies on a clustering structure on the nodes, whereby two nodes belonging to the same latent group tend to create interactions and non-interactions of similar lengths. We introduce a variational expectation–maximization algorithm to perform inference, and adapt a widely used clustering criterion to perform model choice. Finally, we validate our methodology using simulated data experiments and showing two illustrative applications concerning face-to-face interaction data and a bike sharing network.

Keywords: Interaction lengths; Stochastic block model; Variational inference; Integrated completed likelihood; Social network analysis; 62H30; 91D30 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-020-00403-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:14:y:2020:i:2:d:10.1007_s11634-020-00403-w

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-020-00403-w

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:14:y:2020:i:2:d:10.1007_s11634-020-00403-w