Mixtures of Dirichlet-Multinomial distributions for supervised and unsupervised classification of short text data
Laura Anderlucci () and
Cinzia Viroli ()
Additional contact information
Laura Anderlucci: University of Bologna
Cinzia Viroli: University of Bologna
Advances in Data Analysis and Classification, 2020, vol. 14, issue 4, No 2, 759-770
Abstract:
Abstract Topic detection in short textual data is a challenging task due to its representation as high-dimensional and extremely sparse document-term matrix. In this paper we focus on the problem of classifying textual data on the base of their (unique) topic. For unsupervised classification, a popular approach called Mixture of Unigrams consists in considering a mixture of multinomial distributions over the word counts, each component corresponding to a different topic. The multinomial distribution can be easily extended by a Dirichlet prior to the compound mixtures of Dirichlet-Multinomial distributions, which is preferable for sparse data. We propose a gradient descent estimation method for fitting the model, and investigate supervised and unsupervised classification performance on real empirical problems.
Keywords: Clustering; Gradient descent algorithm; Mixture models; Text data analysis; 62H30 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11634-020-00399-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:14:y:2020:i:4:d:10.1007_s11634-020-00399-3
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-020-00399-3
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().