EconPapers    
Economics at your fingertips  
 

Editable machine learning models? A rule-based framework for user studies of explainability

Stanislav Vojíř () and Tomáš Kliegr ()
Additional contact information
Stanislav Vojíř: University of Economics
Tomáš Kliegr: University of Economics

Advances in Data Analysis and Classification, 2020, vol. 14, issue 4, No 4, 785-799

Abstract: Abstract So far, most user studies dealing with comprehensibility of machine learning models have used questionnaires or surveys to acquire input from participants. In this article, we argue that compared to questionnaires, the use of an adapted version of a real machine learning interface can yield a new level of insight into what attributes make a machine learning model interpretable, and why. Also, we argue that interpretability research also needs to consider the task of humans editing the model, not least due to the existing or forthcoming legal requirements on the right of human intervention. In this article, we focus on rule models as these are directly interpretable as well as editable. We introduce an extension of the EasyMiner system for generating classification and explorative models based on association rules. The presented web-based rule editing software allows the user to perform common editing actions such as modify rule (add or remove attribute), delete rule, create new rule, or reorder rules. To observe the effect of a particular edit on predictive performance, the user can validate the rule list against a selected dataset using a scoring procedure. The system is equipped with functionality that facilitates its integration with crowdsourcing platforms commonly used to recruit participants.

Keywords: Rule learning; User experiment; Crowdsourcing; Explainable Artificial Intelligence; Cognitive Computing; Legal compliance; 68T30 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11634-020-00419-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:14:y:2020:i:4:d:10.1007_s11634-020-00419-2

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-020-00419-2

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:14:y:2020:i:4:d:10.1007_s11634-020-00419-2