EconPapers    
Economics at your fingertips  
 

Mixtures of factor analyzers with scale mixtures of fundamental skew normal distributions

Sharon X. Lee, Tsung-I Lin and Geoffrey J. McLachlan ()
Additional contact information
Sharon X. Lee: University of Adelaide
Tsung-I Lin: National Chung Hsing University
Geoffrey J. McLachlan: University of Queensland

Advances in Data Analysis and Classification, 2021, vol. 15, issue 2, No 10, 512 pages

Abstract: Abstract Mixtures of factor analyzers (MFA) provide a powerful tool for modelling high-dimensional datasets. In recent years, several generalizations of MFA have been developed where the normality assumption of the factors and/or of the errors were relaxed to allow for skewness in the data. However, due to the form of the adopted component densities, the distribution of the factors/errors in most of these models is typically limited to modelling skewness concentrated in a single direction. Here, we introduce a more flexible finite mixture of factor analyzers based on the class of scale mixtures of canonical fundamental skew normal (SMCFUSN) distributions. This very general class of skew distributions can capture various types of skewness and asymmetry in the data. In particular, the proposed mixtures of SMCFUSN factor analyzers (SMCFUSNFA) can simultaneously accommodate multiple directions of skewness. As such, it encapsulates many commonly used models as special and/or limiting cases, such as models of some versions of skew normal and skew t-factor analyzers, and skew hyperbolic factor analyzers. For illustration, we focus on the t-distribution member of the class of SMCFUSN distributions, leading to mixtures of canonical fundamental skew t-factor analyzers (CFUSTFA). Parameter estimation can be carried out by maximum likelihood via an EM-type algorithm. The usefulness and potential of the proposed model are demonstrated using four real datasets.

Keywords: Mixture models; Factor Analysis; Skew distributions; EM algorithm; Clustering; 62H30 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11634-020-00420-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:15:y:2021:i:2:d:10.1007_s11634-020-00420-9

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-020-00420-9

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:15:y:2021:i:2:d:10.1007_s11634-020-00420-9