EconPapers    
Economics at your fingertips  
 

A structured covariance ensemble for sufficient dimension reduction

Qin Wang () and Yuan Xue ()
Additional contact information
Qin Wang: The University of Alabama
Yuan Xue: University of International Business and Economics

Advances in Data Analysis and Classification, 2023, vol. 17, issue 3, No 9, 777-800

Abstract: Abstract Sufficient dimension reduction (SDR) is a useful tool for high-dimensional data analysis. SDR aims at reducing the data dimensionality without loss of regression information between the response and its high-dimensional predictors. Many existing SDR methods are designed for the data with continuous responses. Motivated by a recent work on aggregate dimension reduction (Wang in Stat Si 30:1027–1048, 2020), we propose a unified SDR framework for both continuous and binary responses through a structured covariance ensemble. The connection with existing approaches is discussed in details and an efficient algorithm is proposed. Numerical examples and a real data application demonstrate its satisfactory performance.

Keywords: Aggregate dimension reduction; Central subspace; Ensemble learning; Ordinary least squares; Sufficient dimension reduction; 62Hxx; Multivariate; analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11634-022-00524-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:17:y:2023:i:3:d:10.1007_s11634-022-00524-4

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-022-00524-4

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:17:y:2023:i:3:d:10.1007_s11634-022-00524-4