A fresh look at mean-shift based modal clustering
Jose Ameijeiras-Alonso () and
Jochen Einbeck ()
Additional contact information
Jose Ameijeiras-Alonso: Universidade de Santiago de Compostela
Jochen Einbeck: Durham University
Advances in Data Analysis and Classification, 2024, vol. 18, issue 4, No 10, 1067-1095
Abstract:
Abstract Modal clustering is an unsupervised learning technique where cluster centers are identified as the local maxima of nonparametric probability density estimates. A natural algorithmic engine for the computation of these maxima is the mean shift procedure, which is essentially an iteratively computed chain of local means. We revisit this technique, focusing on its link to kernel density gradient estimation, in this course proposing a novel concept for bandwidth selection based on the concept of a critical bandwidth. Furthermore, in the one-dimensional case, an inverse version of the mean shift is developed to provide a novel approach for the estimation of antimodes, which is then used to identify cluster boundaries. A simulation study is provided which assesses, in the univariate case, the classification accuracy of the mean-shift based clustering approach. Three (univariate and multivariate) examples from the fields of philately, engineering, and imaging, illustrate how modal clusterings identified through mean shift based methods relate directly and naturally to physical properties of the data-generating system. Solutions are proposed to deal computationally efficiently with large data sets.
Keywords: Multimodality; Mode detection; Kernel density estimation; Modal testing; Critical bandwidth; 62G07; 62H12 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11634-023-00575-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:18:y:2024:i:4:d:10.1007_s11634-023-00575-1
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-023-00575-1
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().